Electroencephalography (EEG) is an electrophysiological monitoring method to record the electrical activity of the brain. It is typically non-invasive, with the electrodes placed along the scalp, although invasive electrodes are sometimes used such as in electrocorticography. EEG measures voltage fluctuations resulting from ionic current within the neurons of the brain. In clinical contexts, EEG refers to the recording of the brain's spontaneous electrical activity over a period of time,as recorded from multiple electrodes placed on the scalp. Diagnostic applications generally focus on the spectral content of EEG that is the type of neural oscillations (as known as “brain Waves”). Matlab design results show that ELM compared with SVMs with classification accuracy.
Methods
ELM classifier
SVM classifier
Dataset Details
20 Individual datasets for training and testing with 10 control and 10 alcoholic individuals.
64 channels, 256 samples per record
Three stimuli S1, S2, and S3 and 10 trails for every stimulus.
Dataset link
Result Evaluation
With and without optimization.
Reference Paper: Multiclass Epileptic Seizure Classification Using Time-Frequency Analysis of EEG Signals
Author’s Name: Partha Pratim Acharjee, and Celia Shahnaz
Source: IEEE
Year: 2012
Request source code for academic purpose, fill REQUEST FORM or contact +91 7904568456 by WhatsApp or info@verilogcourseteam.com, fee applicable.
SIMULATION VIDEO DEMO